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We report on studies of the early stage of coalescence of two liquid drops. The drops were high viscosity
silicon oil immersed in a water-alcohol mixture of the same density in order to eliminate the effects of gravity.
The viscosity was sufficiently large that measurements could be made under the conditions of Stokes flow.
Measurements were made of the radius of the neck between the drops as a function of the time from the onset
of coalescence, and the results compared with theoretical predictions.
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I. INTRODUCTION

When two liquid drops come into contact, they may either
bounce away from each othersnoncoalescenced or merge
into a single dropscoalescenced. There are two aspects of
this phenomena that are of interest: first, under what condi-
tions the coalescence can start, and second, if coalescence
does take place, how the shape of the two drops evolves with
time. Rayleighf1g and Reynoldsf2g studied these phenom-
ena. The study of coalescence is of importance in under-
standing processes such as raindrop formation, the separation
of emulsions, and the sintering process. In this paper, we
focus on the way in which the shape of liquid drops evolves
during coalescence, and report on measurements of how the
radiusrn of the neck between the drops varies as a function
of time. We report on a series of measurements done with
very viscous liquids such that the flow is in the Stokes re-
gime, as discussed below. We restrict attention to the consid-
eration of two drops with the same radiusR0 approaching
each other with a very small relative velocity.

The parameters involved in the coalescence process are
R0, the viscosityh, the densityr, and surface tensiong.
From these parameters, we can construct the dimensionless
Suratman number

Su =
rgR0

h2 , s1d

and a quantity

lv ;
h2

gr
, s2d

which we will call the viscous length. In the Stokes regime,
at each instant the flow velocity is such that there is a balance
between the viscous forces and surface tension. At first sight,
it would appear that the requirement for the Stokes flow is
the condition Su!1, or, equivalently, when the viscous
length is much larger than the radius of the drop. However, it
is necessary to justify this more carefully since in the early
stage of coalescence, the radiusrn of the neck between the
two drops is much smaller thanR0 and thus one can con-
struct a second dimensionless quantityrn/R0.

There have been many attempts to determine the shape
evolution by solving the Navier-Stokes equation either ana-
lytically or numerically. Among these efforts, Frenkelf3g

gave a theoretical analysis based on the assumption of the
Stokes flow. He equated the change in the surface energy to
the energy dissipated by the viscosity. By making an assump-
tion about the nature of the velocity field in the vicinity of
the growing neck, he arrived at the result

rn

R0
= S 3gt

2pR0g
D1/2

. s3d

Later, Hopperf4g pointed out that the Frenkel’s result was
flawed due to the incorrect assumption about the form of the
flow. In Hopper’s study, he gave an analytical solution for
coalescence in two dimensions, i.e., for the coalescence of
two infinitely long cylindersf5–7g. His calculation showed
that when the cylinders are surrounded by an inviscid fluid or
by no fluid, immediately after the coalescence starts

rn

R0
<

tg

pR0h
Uln

tg

R0h
U . s4d

This holds whenrn!R0.
Eggerset al. f8g considered the three-dimensional prob-

lem. They pointed out that during the early stage of the coa-
lescence, since the flow at the neck is driven by the highly
curved meniscus, the result should be asymptotically the
same as in two dimensions, i.e., Eq.s4d should apply. Fur-
thermore, they argued that the local Reynolds number Re
near the meniscus should be of the order ofrgrn/h2. Thus,
immediately after coalescence starts, Re!1 will hold regard-
less of the actual properties of the fluid. The condition Re
!1 will continue to hold throughout the time interval in
which rn! lv, where lv is the viscous length scale already
introduced. However,lv is often very small. For water,lv
=140 Å and for mercurylv=4 Å.

In the later stage of shape evolution whenrn@ lv, the liq-
uid can be considered inviscid and a simple power law can
be derived from the Euler equation which whenrn!R0 gives
f9g

rn ~ t1/2. s5d

Thus, the progress of coalescence of two liquid drops con-
sists of three phases. First, the two interfaces rupture at some
point and establish a liquid bridge in betweenfsee Fig. 1g.
Second, whenrn! lv, the flow is in the Stokes flow regime
near the neck and follows the Stokes equation. Third, when

PHYSICAL REVIEW E 71, 016309s2005d

1539-3755/2005/71s1d/016309s5d/$23.00 ©2005 The American Physical Society016309-1



rn@ lv, the liquid can be considered inviscid and follows the
Euler equation.

Recently, Menchaca-Rochaet al. f10g reported an experi-
ment carried out with mercury. They studied the coalescence
of two mercury drops each of radius 0.05 cm. They were
able to measure the neck radiusrn once it had reached 0.015
cm, i.e., a value much larger thanlv, but only one third of the
initial radius. By making a fit to the measuredrn with a
power-law rn~ ta, they obtaineda between 0.41 and 0.55,
close to the valuea=1/2 for coalescence of inviscid liquid
drops described by Eq.s5d. In this paper we report on mea-
surements in the early stage of coalescence whenrn! lv.

II. EXPERIMENT

As already noted, for a fluid such as water, the viscous
length scalelv is so small as to make measurement of the
radius of the neck impossible forrn! lv. In addition, the time
over which the motion of the fluid is in the Stokes regime is
very small. If we assume the neck moves at a speed ofg /h,
the time scaletv for the viscous flow is in the order of
h3/rg2. For water, this gives a time scale of the order of
10−9 s. To makelv andtv much larger, we used three samples
of DC-200 silicone oil from Dow Corning Inc., with viscos-
ity of 103,104, and 105 cS, and density 0.97 g cm−3.

To minimize the effects of gravity, we constructed a Pla-
teau tank as shown in Fig. 2. The tank was initially filled
with a mixture of water andn-propyl alcohol with a ratio of
water to alcohol chosen to achieve a density match with sili-
cone oil. Silicon oil was introduced slowly through openings
in the top and bottom of the tank, and the volume of the oil
in each drop could be controlled through the two pistons
indicated. Around the orifices in the upper and lower sur-
faces of the cell through which the oil entered was a ridge of
radiusR0. The distance from the lower surface of the upper
ridge to the upper surface of the lower ridge was 2R0. Thus,
when sufficient oil was introduced into the cell for the upper
and lower drops to make contact, each drop was in the form
of a hemisphere.

The surface tension of the interface between the oil and
the water-alcohol mixture was measured by the sessile drop
methodf11g. The result was found to be 9±1 dyn cm−1, the
same for each of the oil samples to within the experimental
error.

We were able to adjust the density of the alcohol-water
mixture by adding water orn-propyl alcohol into the tank.
The effect of gravity is measured by the Bond number

Bo =
gR0

2uDru
g

, s6d

whereDr is the difference between the density of the oil and
the alcohol-water mixture. Thus, the effect of a slight density

mismatch increases with drop size. To estimate the density
mismatch, we made measurements of the shape of the me-
niscus after coalescence had occurred and after sufficient
time had elapsed so that the interface was no longer moving
fsee Fig. 2sbdg. The shape of the interface is then governed
by the equation

gk = DP − gzDr, s7d

wherek is the sum of the principal curvatures of the surface
and DP is a constantssee belowd. Using cylindrical polar
coordinatesr −z,

k =
1

r

1

f1 + s] r/] zd2g1/2 −
]2r

] z2

1

f1 + s] r/] zd2g3/2. s8d

The boundary conditions are thatr =R0 when z= ±R0, and
the value ofDP determines the total volume of the oil in the
cell. For Bo=0 the pressure difference across the interface of
the two fluids is the same everywhere and so the mean cur-
vature is constant. Thus the upper and lower parts of the oil
have the same shape. If Bo is nonzero and small, there will
still be a stable equilibrium shape, but there will no longer be
up-down symmetry. Above a critical value ofuBou, the bridge
will not be stable and will break upf12g.

For given assumed values ofDr andDP, it is straightfor-
ward to use Eq.s8d to calculate the shape of the interface.
These values can then be adjusted to obtain a best fit to the
measured shape of the meniscus. This provides a convenient
method for the determination ofDr and Bo. We made mea-
surements for drops with initial radii of 0.5 and 5 cm, and the

FIG. 1. Sketch of two drops in the early stage of coalescence.
The initial radius isR0 and the radius of the neck isrn.

FIG. 2. The Plateau tank for the coalescence experiment.sad The
configuration of the drops just before coalescence occurs.sbd The
equilibrium shape of the drops after coalescence.
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data for a 5 cmdrop are shown in Fig. 3. From the best fit
value of Dr, we were able to determine that the density
mismatch was 4 ppm, which corresponds to Bo,0.01. For
the smaller drops, the requirement for matching the density
is much less critical.

The shape of the meniscus was recorded with a fast-frame
camera that can take 1000 frames at 1000 frames per second
s2563256 pixelsd and a standard home video camera run-
ning at 29.97 frames per seconds7203480 pixelsd. Figure 4
shows a series of pictures taken forR0=5 cm. The shape of
the meniscus in the last image in this figure is very close to
the equilibrium shape.

The neck size as a function of time is shown in Fig. 5. In
this figure, we have included data points withrn as small as
0.1R0. For rn smaller than 0.1R0, the measurement ofrn be-
comes difficult. Ideally, when the two drops approach each
other, a bridge between them should form as soon as there is
any contact between their two surfaces. This bridge should
first appear at a point along the line between the centers of
the drops. However, we observed that in our experiment the
liquid bridge was not established immediately after the drops
came into contact. Consequently, as the two drops continued
to approach each other, the surface of both drops deformed
slightly and their surfaces were in contact over an appre-
ciable area before coalescence took place. We observed that
sometimes two drops could remain with substantial contact
without coalescing for a long time, i.e., up to several hours
for 5-cm-radius drops. There is a substantial literature on the
phenomenon of noncoalescencef13–15g. We have not at-
tempted to investigate how the rupture of the interfaces takes
place to establish the initial liquid bridge. The sequence of
measurements ofrn as a function oft shown in Fig. 5 was
started from the time at which we could first detect a rapid
increase in the radius of the neck.

III. ANALYSIS AND DISCUSSION

Based on the measured surface tension, we find that the
Suratman number has the values 4.4310−2, 4.4310−3, 4.4

310−4 for drops of radius 0.5 cm and viscosity 103,104, and
105 cS, respectively, and for the 5-cm drop with viscosity
105 cS, Su=4.4310−5. Thus, for all of the drops measured,
the flow should be in the Stokes regime, i.e., the inertia of
the fluid should not be relevant. It follows that the radius of
the neck at time must be given by the scaling formula

rn

R0
= fS t

t
D , s9d

where

t = R0h/g, s10d

and f is some function. Note that Eqs.s3d ands4d are of this
general form. We can use our data to test whether it is con-
sistent with the form of Eq.s9d. In Fig. 6, we show a plot of
r /R0 as a function oft /t for the four drops that we have
studied. It can be seen that the scaling formula Eq.s9d is
obeyed within experimental error, even though the viscosity

FIG. 3. The equilibrium shape of the liquid bridge after coales-
cence. The initial radius of the drops was 5 cm. The open circles are
the experimental data and the solid line is calculated from Eq.s8d
using Bo andDP as adjustable parameters.

FIG. 4. The coalescence of two hemispheres of initial radius
R0=5 cm. The time lapse between the images is 120 s. The shape
shown in the final imagesbottom rightd is very close to the equilib-
rium shape.
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ranges over two orders of magnitude and the radius over one
order.

As already mentioned, there is some uncertainty regarding
the correct choice of the zero of time. This uncertainty af-
fects the plots ofrn as a function of time. To avoid this
problem we can instead consider how the neck velocityvn
varies with the radiusrn, since this relation is unaffected by
the choice of the origin of time. In the Stokes regime it
should be true that

vnh

g
= gsrn/R0d, s11d

whereg is another function that can be related to the function
f. Thus, a plot in terms of the scaled variablesvnh /g and

rn/R0 should give the same curve for each drop. It can be
seen from Fig. 7 that when plotted in this way, the results
from the four different drops are in close agreement. More-
over, the scaled velocity appears to vary linearly with the
scaled neck radius. A fit to the data gives

vnh

g
= a − b

rn

R0
, s12d

with a=1.0±0.1 andb=1.6±0.2. From Eq.s12d, follows the
result:

rn =
aR0

b
f1 − e−bgt/sR0hdg. s13d

A plot of this relation is included in Fig. 6, and it can be seen
that Eq.s13d gives a good fit to the experimental data.

Finally, we consider the relation of these results to the
theory of Eggerset al. f8g and Hopperfsee Eq.s4dg. We have
included in Figs. 6 and 7 curves that show the predicted
variation ofrn with t, andvn with rn, based on this theory. It
can be seen that the theory is not in agreement with the
experimental results. However, as Hopper has emphasized
f4g, while Eq.s4d appears to be the correct limiting form for
small t /t, it is not a good approximation unlesst /t is ex-
tremelysmall. We suspect that this is the reason for the dis-
agreement between experiment and theory. We hope to report
measurements for significantly smaller values oft /t and
rn/R0 in a subsequent paper.
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FIG. 5. The radius of the neck as a function of time after the
onset of coalescence for drops with viscosity of 103,104, and
105 cS, and initial radiusR0=0.5 and 5 cm.

FIG. 6. Plot of the radius of the neckrn divided by the initial
drop radiusR0 as a function of the timet divided by the scaling
time t. The solid curve is a plot based on Eq.s13d, and the dashed
curve is the result predicted by Eq.s4d.

FIG. 7. Plot of the rate of growthvn of the neck divided by the
scaling velocityg /h as a function of the radiusrn divided by the
initial drop radiusR0. The solid line is the fit to the data described
in the text, and the dashed curve is the result predicted by Eq.s4d.
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